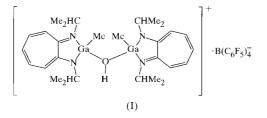
Acta Crystallographica Section C Crystal Structure Communications

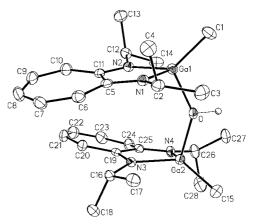
ISSN 0108-2701

A cationic hydroxo-bridged dinuclear gallium complex

Ilia A. Guzei,^a* Samuel Dagorne^b and Richard F. Jordan^b


^aDepartment of Chemistry, Iowa State University of Science and Technology, Ames, Iowa 50011, USA, and ^bDepartment of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA Correspondence e-mail: iguzei@bert.chem.wisc.edu

Received 6 June 2000 Accepted 5 October 2000


The crystal structure of μ -hydroxo-bis{[*N*-isopropyl-2-(isopropylamino)troponimino-*N*,*N'*](methyl)gallium(II)} tetrakis(pentafluorophenyl)borate (troponimine is 2,4,6cycloheptatrien-1-imine), [Ga₂(C₁₄H₂₂N₂)₂(OH)]B(C₆H₅)₄, is discussed. The two (^{*i*}Pr₂-ATI)GaMe (ATI is aminotroponimime) units of the dinuclear cation are linked by a bridging hydroxo group and are both slightly twisted from planarity.

Comment

In recent reports, we have described the synthesis, structures and reactivity of several classes of cationic group 13 alkyl complexes, some of which polymerize ethylene (Coles & Jordan, 1997; Ihara *et al.*, 1998; Radzewich *et al.*, 1998, 1999; Korolev *et al.*, 1999; Dagorne *et al.*, 2000). During these studies, we found that the cationic Ga methyl complex $[({}^{i}Pr_{2}-ATI)Ga-$ (Me)(NMe₂Ph)][B(C₆F₅)₄] is hydrolyzed to the cationic dinuclear Ga–hydroxo complex $[\{({}^{i}Pr_{2}-ATI)GaMe\}_{2}(\mu-OH)]$ -[B(C₆F₅)₄], (II), the molecular structure of which is presented here.

Compound (II) crystallizes as discrete $[({}^{i}Pr_{2}-ATI)GaMe]_{2}$ - $(\mu-OH)^{+}$ cations and $B(C_{6}F_{5})_{4}^{-}$ anions with no close cationanion contacts. The $B(C_{6}F_{5})_{4}^{-}$ anion has a slightly distorted tetrahedral structure. The C29–B–C41 [103.3 (3)°] and C35–B–C47 [101.5 (3)°] bond angles are smaller than the ideal tetrahedral angle (109.47°), which is compensated for by opening of the other C–B–C angles [113.1 (3)° average]. The C₆F₅ rings are normal. The cation of (II) contains two (${}^{i}Pr_{2}$ -ATI)GaMe units which are linked through the Ga centers by a hydroxo bridge (Fig. 1). The Ga1–O [1.935 (2) Å] and Ga2–O [1.947 (2) Å] bond distances and

Figure 1

The structure of the cation of (II). Displacement ellipsoids are shown at the 30% probability level.

the Ga-O-Ga bond angle [140.87 (11)°] are very similar to those in $[({}^{t}Bu)_{2}Ga(\mu-OH)]_{3}$ [average Ga-O 1.957 (5) Å; average Ga-O-Ga 143.0 (2)°], which contains three hydroxo bridges (Atwood et al., 1993). The two (ⁱPr₂-ATI)GaMe units of (II) exhibit very similar structures. Both Ga centers adopt a distorted tetrahedral geometry. The N1-Ga1-N2 [84.25 (12)°] and N3-Ga2-N4 [84.44 (11)°] bond angles are comparable to those in $({}^{i}Pr_{2}-ATI)AIMe_{2}$ [83.3 (2)°] and (Me₂-ATI)₂GaI [80.5 (2)° average] (Dias & Jin, 1995, 1996). The small N-Ga-N bond angles in (II) are compensated for by opening of the N–Ga–C angles $[126 (3)^{\circ}]$ average]. The N-Ga-O [average $105 (2)^{\circ}$] and C-Ga-O [average 107 (1)°] bond angles are similar. The Ga–N bond distances in (II) [average 1.916 (2) Å] are shorter than those in (Me₂-ATI)₂GaI [average 1.97 (2) Å; Dias & Jin, 1996], which is expected due to the higher charge and lower coordination number of (II). The aminotroponiminate C-N bond distances of (II) fall in the range 1.341 (4)-1.352 (4) Å, and thus are intermediate between the normal $Csp^2 - N$ single bond (1.47 Å) and C=N double bond (1.29 Å) distances, which is consistent with significant delocalization of the π -electrons within the ATI unit. However, the five-membered N-C-C-N-Ga rings are slightly twisted as is manifested by the key torsion angles Ga1-N1-C5-C11 [6.0 (4) $^{\circ}$] and Ga2-N3-C19-C25 [12.0 (3)°]. Additionally, the seven-membered rings of the ATI ligands are also slightly twisted [torsion angles C9-C10-C11-C5 12.0 (6)° and C23-C24-C25-C19 13.9 (6)°]. The Ga-C bond distances in (II) [average 1.941 (3) Å] are comparable to those in $[^{t}BuC(N^{t}Pr)_{2}]Ga Me_2 \cdot [^tBuC(N^tPr)_2]GaMe^+$ [average 1.950 (3) Å; Dagorne et al., 2000] and are slightly shorter than those in [Me₂Ga- $(NH_2^{t}Bu)_2$]Br [average 1.98 (2) Å; Atwood *et al.*, 1992].

Experimental

A resealable J-Young NMR tube was charged with (${}^{i}Pr_{2}$ -ATI)Ga-Me₂ (152 mg, 0.50 mmol) and (NHMe₂Ph)[B(C₆F₅)₄] (395 mg, 0.50 mmol), and C₆D₅Cl (0.5 ml) was added at 296 K. The tube was shaken to yield a clear orange solution, which was immediately analyzed by 1 H, 13 C, 11 B and 19 F NMR spectroscopy, which showed

metal-organic compounds

that quantitative conversion to $[({}^{i}Pr_{2}-ATI)Ga(Me)(NMe_{2}Ph)]$ - $[B(C_6F_5)_4]$, (I), had occurred. The volume of the solution was reduced to ca 0.1 ml under vacuum and wet pentane (ca 1 ml) was slowly added. Phase separation occurred. The tube was left at 296 K for 3 d which resulted in the formation of yellow-orange crystals of $[{({}^{i}Pr_{2}-$ ATI)GaMe $_{2}(\mu$ -OH)][B(C_{6}F_{5})_{4}], (II), at the phase boundary.

Crystal data	
$[Ga_2(C_{14}H_{22}N_2)_2(OH)](C_{24}F_{20}B)$	$D_x = 1.611 \text{ Mg m}^{-3}$
$M_r = 1272.17$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 7833
a = 17.7211 (8) Å	reflections
b = 16.0050 (7) Å	$\theta = 2-26^{\circ}$
c = 18.5655 (9) Å	$\mu = 1.142 \text{ mm}^{-1}$
$\beta = 94.904 \ (1)^{\circ}$	T = 173 (2) K
$V = 5246.4 (4) \text{ Å}^3$	Block, yellow
Z = 4	$0.35 \times 0.32 \times 0.30 \text{ mm}$

Data collection

Bruker SMART CCD-1000 6612 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.064$ diffractometer $\theta_{\rm max} = 26.37^{\circ}$ φ scans $h = -22 \rightarrow 22$ Absorption correction: empirical (SADABS; Blessing, 1995) $k=-20\rightarrow 20$ $l = -23 \rightarrow 23$ $T_{\rm min} = 0.69, \ T_{\rm max} = 0.73$ 47660 measured reflections Intensity decay: <1% 10732 independent reflections

Refinement

Refinement on F^2 H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0050P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.038$ where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.054$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 0.996 $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$ 10732 reflections $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ 732 parameters

All H atoms were included in the structure-factor calculations at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients (C-H = 0.95-0.99 Å, N-H = 0.88-0.91 Å and B-H = 1.12 Å). The H atom of the hydroxo group was located from the difference map, but was subsequently refined with an idealized geometry (O-H = 0.84 Å).

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1997a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1

Selected geometric parameters (Å, °).

Ga1-N1	1.916 (3)	Ga2-N3	1.909 (3)
Ga1-N2	1.917 (3)	Ga2-N4	1.922 (3)
Ga1-O	1.935 (2)	Ga2-C15	1.940 (3)
Ga1-C1	1.943 (3)	Ga2–O	1.947 (2)
N1-Ga1-N2	84.25 (12)	N3-Ga2-C15	128.85 (13)
N1-Ga1-O	104.12 (10)	N4-Ga2-C15	124.42 (14)
N2-Ga1-O	106.83 (10)	N3-Ga2-O	106.14 (10)
N1-Ga1-C1	127.12 (13)	N4-Ga2-O	103.86 (10)
N2-Ga1-C1	123.91 (14)	C15-Ga2-O	105.73 (12)
O-Ga1-C1	107.39 (13)	Ga1-O-Ga2	140.87 (11)
N3-Ga2-N4	84.44 (11)		
N2-Ga1-N1-C5	3.6 (2)	N1-C5-C11-N2	5.7 (4)
N1-Ga1-N2-C12	168.6 (3)	C6-C5-C11-C10	11.5 (5)
N4-Ga2-N3-C19	-10.2(2)	Ga2-N3-C19-C20	-166.1(2)
N3-Ga2-N4-C25	6.2 (2)	Ga2-N3-C19-C25	12.0 (3)
Ga1-N1-C5-C11	-6.0(4)	C19-C20-C21-C22	5.4 (7)
C5-C6-C7-C8	-6.9(7)	C21-C22-C23-C24	-6.4(7)
C7-C8-C9-C10	5.8 (7)	C23-C24-C25-C19	13.9 (6)
C9-C10-C11-N2	171.9 (4)	C20-C19-C25-C24	-13.1 (5)
C9-C10-C11-C5	-12.0(6)		

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1292). Services for accessing these data are described at the back of the journal.

References

Atwood, D. A.,	Cowley, A.	Н.,	Harris,	P. R.,	, Jones,	R. A.,	Koschmie	edei	:, S.	U.,
Nume C M	A true ad T	та	Datt 6	C	1002)	0		10	24	20

- Nunn, C. M., Atwood, J. L. & Bott, S. G. (1993). Organometallics, **12**, 24–29. Atwood, D. A., Jones, R. A., Cowley, A. H., Bott, S. G. & Atwood, J. L. (1992). J. Organomet. Chem. 425, C1-3.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Coles, M. P. & Jordan, R. F. (1997). J. Am. Chem. Soc. 119, 8125-8126.
- Dagorne, S., Guzei, I. A., Coles, M. P. & Jordan, R. F. (2000). J. Am. Chem. Soc. 122, 274-289.
- Dias, H. V. R. & Jin, W. (1995). Inorg. Chem. 34, 6100-6105.
- Dias, H. V. R. & Jin, W. (1996). Inorg. Chem. 35, 6546-6551.
- Ihara, E., Young, V. G. Jr & Jordan, R. F. (1998). J. Am. Chem. Soc. 120, 8277-8278.
- Korolev, A., Guzei, I. A. & Jordan, R. F. (1999). J. Am. Chem. Soc. 121, 11606-11607.
- Radzewich, C. E., Coles, M. P. & Jordan, R. F. (1998). J. Am. Chem. Soc. 120, 9384-9385
- Radzewich, C. E., Guzei, I. A. & Jordan, R. F. (1999). J. Am. Chem. Soc. 121, 8673-8674.
- Sheldrick, G. M. (1997a). SHELXTL Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997b). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.